Hypothesis testing review

- 2 ‘competing theories’ regarding a population parameter:
 - NULL hypothesis H (‘straw man’)
 - ALTERNATIVE hypothesis A (‘claim’, or theory you wish to test)
- H: NO DIFFERENCE
 - any observed deviation from what we expect to see is due to chance variability
- A: THE DIFFERENCE IS REAL
Test statistic

- Measure how far the observed data are from what is expected assuming the NULL H by computing the value of a test statistic (TS) from the data
- The particular TS computed depends on the parameter
- For example, to test the population mean, the TS is the sample mean (or standardized sample mean)

Testing a population mean

- We have already learned how to test the mean of a population for a variable with a normal distribution when the sample size is small and the population SD is unknown
- What test is this??
t-test assumption of normality

- The *t*-test was developed for samples that have *normally distributed* values.
- This is an example of a *parametric test* - a (parametric) form of the distribution is assumed (here, a normal distribution).
- The *t*-test is fairly robust against departures from normality if the sample size is not too small.
- *BUT* if the values are extremely non-normal, it might be better to use a procedure which does not make this assumption.

Nonparametric hypothesis tests

- *Nonparametric* (or *distribution-free*) hypothesis tests do not make assumptions about the *form* of the distribution of the data values.
- These tests are usually based on the *ranks* of the values, rather than the actual values themselves.
- There are nonparametric analogues of many parametric test procedures.
One-sample Wilcoxon test

- Nonparametric alternative to the *t*-test
- Tests value of the center of a distribution
- Based on sum of the (positive or negative) ranks of the differences between observed and expected center
- Test statistic corresponds to selecting each number from 1 to *n* with probability $\frac{1}{2}$ and calculating the sum
- In R: `wilcox.test()`

Two-sample Wilcoxon test

- Nonparametric alternative to the 2-sample *t*-test
- Tests for differences in location (center) of 2 distributions
- Based on replacing the data values by their ranks (without regard to grouping) and calculating the sum of the ranks in a group
- Corresponds to sampling *n*₁ values without replacement from 1 to *n*₁ + *n*₂
- In R: `wilcox.test()`
Matched-pairs Wilcoxon

- Nonparametric alternative to the paired \(t \)-test
- Analogous to paired \(t \)-test, same as one-sample Wilcoxon but on the differences between paired values
- In \texttt{R}: \texttt{wilcox.test()}

ANOVA and the Kruskal-Wallis test

- Nonparametric alternative to one-way ANOVA
- Mechanics similar to 2-sample Wilcoxon test
- Based on between group sum of squares calculated from the average ranks
- In \texttt{R}: \texttt{kruskal.test()}
Issues in nonparametric testing

- Some (mistakenly) assume that using a nonparametric test means that you don’t make any assumptions at all
- **THIS IS NOT TRUE!!**
- In fact, there is really only one assumption that you are relaxing, and that is of the form that the distribution of sample values takes
- A major reason that nonparametric tests are avoided if possible is their relative lack of power compared to (appropriate) parametric tests

Parameter estimation

- Have an unknown *population parameter* of interest
- Want to use a sample to make a guess (*estimate*) for the value of the parameter
- **Point estimation**: Choose a *single value* (a ‘point’) to estimate the parameter value
- Methods of point estimation include: ML, MOM, Least squares, Bayesian methods...
- **(Confidence) Interval estimation**: Use the data to find a *range of values* (an interval) that seems likely to contain the true parameter value
CI mechanics

- When the CLT applies, a CI for the population mean looks like
 \[\text{sample mean} \pm z^* \frac{\sigma}{\sqrt{n}}, \]
 where \(z \) is a number from the standard normal chosen so the confidence level is a specified size (e.g. 95%, 90%, etc.)

- For small samples from a normal distribution, use CI based on \(t \)-distribution
 \[\text{sample mean} \pm t^* \frac{s}{\sqrt{n}} \]

Example

- To set a standard for what is to be considered a 'normal' calcium reading, a random sample of 100 apparently healthy adults is obtained. A blood sample is drawn from each adult. The variable studied is \(X = \text{number of mg of calcium per dl of blood} \).
 - sample mean = 9.5
 - sample SD = 0.5

- Find an approximate 95% CI for the (population) average number of mg of calcium per dl of blood ...
Russian dolls analogy*

- Père Noël dolls ... Outermost is 'doll 0', next is 'doll 1', etc.
- We are not allowed to observe doll 0, which represents the population in a sampling scheme.
- Want to estimate some characteristic of doll 0 (e.g. number of points on the beard)
- **Key assumption**: the relationship (e.g. ratio) between dolls 1 and 2 is the same as that between dolls 0 and 1

* from *The Bootstrap and Edgeworth Expansion*, by Peter Hall, Springer 1992

From dolls to statistics

- Say you want to estimate some function of a population distribution - e.g. the population mean
- It makes sense, when possible, to use the same function of the sample distribution
- We can do this same thing for many other types of functions
- A common example is that we might wish to obtain the sampling distribution of an estimator in order to make a CI, say, in cases where large sample approximations might not hold
An idea

- Where exact calculations are difficult to obtain, they may be approximated by resampling from the observed distribution of sample values.
- That is, pretend that the sample is the 'population'.
- The bootstrap procedure is to draw some number \(R \) of samples with replacement from the 'bootstrap population' (i.e. the original sample values).
- You need a computer to do this!

Bootstrap procedure

- For each bootstrap sample, compute the value of the desired statistic.
- At the end, you will have \(R \) values of the statistic.
- You can use standard data summary procedures to summarize or explore the distribution of the statistic (histogram, QQ plot, compute the mean, SD, etc.)
- For example, to make a bootstrap CI for the sample mean based on the normal distribution, you could use the bootstrap SD (instead of the sample SD) ...
Versions of the bootstrap

- **Nonparametric Bootstrap**: as just described, draw bootstrap samples from the original data.

- **Parametric Bootstrap**: assume that your original data came from some **particular distribution** (for example, a normal distribution, or exponential, etc.)

- In this case, samples are *simulated* from that **assumed distribution**.

- Distribution parameters (for example, the mean and SD for the normal) are **estimated from the original sample**.

R: bootstrap demo

- You will have some practice with this in the TP.
- Let’s go to the **demo**...