Gene Finding And Gene Structure Prediction
Course 2005

Lorenzo Cerutti
Swiss Institute of Bioinformatics, Lausanne

Outline

- Introduction
- Ab initio methods
 - Coding statistics
 - Signal detection
 - Integration of signal detection and coding statistics
 - Software
- Homology methods
 - Principle of the method
 - Software
- Performance evaluation
The Central Dogma

Genetic code

<table>
<thead>
<tr>
<th>First letter</th>
<th>Second letter</th>
<th>Third letter</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>U</td>
<td>UC</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>U</td>
<td>U</td>
<td>UC</td>
</tr>
<tr>
<td>UU</td>
<td>U</td>
<td>UC</td>
</tr>
<tr>
<td>UU</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>UU</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>UU</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>CU</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>CA</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>CUG</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>A</td>
<td>U</td>
<td>UC</td>
</tr>
<tr>
<td>AU</td>
<td>U</td>
<td>UC</td>
</tr>
<tr>
<td>AU</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>AU</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>AU</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>AUG</td>
<td>U</td>
<td>UC</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>G</td>
<td>U</td>
<td>UC</td>
</tr>
<tr>
<td>GU</td>
<td>U</td>
<td>UC</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>UG</td>
<td>U</td>
<td>UC</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>G</td>
<td>G</td>
</tr>
</tbody>
</table>

Reading frame

Forward strand:
- frame #1: ATG GTA ACA TGG C..
- frame #2: TGG TAA CAT GGC
- frame #3: GGT AAC ATG GC.

Reverse strand:
- frame #4: GCC ATG TTA CCA T..
- frame #5: CCA TGT TAC CAT
- frame #6: CAT GTT ACC AT.

Prokaryotic gene structure

- **Simple gene structure**
- **Overlapping genes**
What is gene finding?

- Given a genomic DNA sequence we want to predict regions encoding for a protein: the genes.

- Gene finding consists in:
 - identify the coding potential of a region in a particular frame
 - identify boundaries between coding and non-coding regions
Gene finding: not an easy task!

- DNA sequence signals have a low information content
- DNA signals may vary in different organisms
- difficult to discriminate real signals from noise
- gene structure can be complex (sparse exons, alternative splicing, ...)
- pseudo-genes
- sequence errors (frame shifts, ...)
- Human genome: 3 billion base pairs and 35,000 protein-coding genes

Gene finding strategies (1)

- Ab initio methods:
 - signals: short DNA motifs (promoters, start/stop codons, splice sites, ...)
 - coding statistics: nucleotide compositional bias in coding regions
- Strengths:
 - easy to run and fast execution
 - only require DNA sequence as input
- Weaknesses:
 - prior knowledge is required (training set)
 - high number of mispredicted gene structures
Gene finding strategies (2)

- Homology methods:
 - gene structure is deduced using homologous sequences (ESTs, mRNAs, proteins)
 - accurate results when using close homologous sequences
- Strengths:
 - accurate
- Weaknesses:
 - need of homologous sequences
 - slow execution

Outline

- Introduction
- Ab initio methods
 - Coding statistics
 - Signal detection
 - Integration of signal detection and coding statistics
 - Software
- Homology methods
 - Principle of the method
 - Software
- Performance evaluation
Overview of ab initio methods

Outline

- Introduction
- Ab initio methods
 - Coding statistics
 - Signal detection
 - Integration of signal detection and coding statistics
 - Software
- Homology methods
 - Principle of the method
 - Software
- Performance evaluation
Coding statistics

- Inter-genic regions, introns, and exons have different nucleotide contents
- Example: observed stop codons (TAG, TAA, TGA)
 - assuming an uniform random distribution, we expect stop codons every 64/3 codons (∼ 21 codons) in average
 - in coding regions the appearance of stop codons decrease
 - ... but, this measure is sensitive to frame shift errors and can’t detect short coding regions

Coding statistics: dimers frequencies

- Dimer frequencies observed in proteins from Shewanella (avg ∼ 5%):

<table>
<thead>
<tr>
<th></th>
<th>ala</th>
<th>asn</th>
<th>arg</th>
<th>asp</th>
<th>cys</th>
<th>glu</th>
<th>gly</th>
<th>glu</th>
<th>his</th>
<th>ile</th>
<th>leu</th>
<th>met</th>
<th>lys</th>
<th>phe</th>
<th>pro</th>
<th>ser</th>
<th>thr</th>
<th>tyr</th>
<th>val</th>
</tr>
</thead>
<tbody>
<tr>
<td>ala</td>
<td>9.5</td>
<td>4.3</td>
<td>4.1</td>
<td>5.3</td>
<td>1.2</td>
<td>6.0</td>
<td>6.5</td>
<td>4.8</td>
<td>2.0</td>
<td>6.5</td>
<td>11.0</td>
<td>2.6</td>
<td>6.0</td>
<td>3.7</td>
<td>3.5</td>
<td>6.2</td>
<td>1.1</td>
<td>5.0</td>
<td>2.7</td>
</tr>
<tr>
<td>arg</td>
<td>7.9</td>
<td>3.9</td>
<td>5.5</td>
<td>5.3</td>
<td>1.1</td>
<td>5.0</td>
<td>5.9</td>
<td>5.5</td>
<td>2.6</td>
<td>6.5</td>
<td>14.4</td>
<td>2.2</td>
<td>5.0</td>
<td>4.7</td>
<td>3.6</td>
<td>5.5</td>
<td>1.4</td>
<td>4.4</td>
<td>4.0</td>
</tr>
<tr>
<td>asn</td>
<td>9.6</td>
<td>4.2</td>
<td>4.9</td>
<td>4.9</td>
<td>1.0</td>
<td>5.3</td>
<td>7.4</td>
<td>5.6</td>
<td>2.3</td>
<td>6.0</td>
<td>10.2</td>
<td>2.0</td>
<td>4.9</td>
<td>3.5</td>
<td>5.1</td>
<td>6.1</td>
<td>1.5</td>
<td>5.8</td>
<td>1.1</td>
</tr>
<tr>
<td>asp</td>
<td>9.3</td>
<td>4.7</td>
<td>6.0</td>
<td>5.1</td>
<td>1.0</td>
<td>6.7</td>
<td>7.0</td>
<td>2.9</td>
<td>1.8</td>
<td>7.1</td>
<td>9.6</td>
<td>2.3</td>
<td>6.3</td>
<td>4.3</td>
<td>3.9</td>
<td>5.9</td>
<td>1.6</td>
<td>5.1</td>
<td>1.6</td>
</tr>
<tr>
<td>cys</td>
<td>8.4</td>
<td>3.1</td>
<td>4.8</td>
<td>5.4</td>
<td>1.7</td>
<td>5.6</td>
<td>8.1</td>
<td>5.2</td>
<td>4.2</td>
<td>5.4</td>
<td>10.2</td>
<td>1.8</td>
<td>3.8</td>
<td>4.2</td>
<td>4.6</td>
<td>5.3</td>
<td>1.6</td>
<td>4.4</td>
<td>2.4</td>
</tr>
<tr>
<td>glu</td>
<td>9.4</td>
<td>3.6</td>
<td>5.8</td>
<td>4.5</td>
<td>0.8</td>
<td>4.9</td>
<td>5.8</td>
<td>7.0</td>
<td>2.6</td>
<td>5.9</td>
<td>12.7</td>
<td>2.4</td>
<td>5.0</td>
<td>4.0</td>
<td>3.5</td>
<td>5.4</td>
<td>1.1</td>
<td>5.0</td>
<td>2.8</td>
</tr>
<tr>
<td>gly</td>
<td>10.3</td>
<td>3.9</td>
<td>4.9</td>
<td>4.4</td>
<td>0.9</td>
<td>4.5</td>
<td>7.0</td>
<td>6.8</td>
<td>2.7</td>
<td>5.5</td>
<td>12.4</td>
<td>2.0</td>
<td>4.1</td>
<td>3.9</td>
<td>3.8</td>
<td>5.8</td>
<td>1.4</td>
<td>5.3</td>
<td>1.0</td>
</tr>
<tr>
<td>his</td>
<td>8.1</td>
<td>3.9</td>
<td>4.8</td>
<td>5.1</td>
<td>1.2</td>
<td>6.0</td>
<td>6.4</td>
<td>4.6</td>
<td>2.4</td>
<td>4.8</td>
<td>10.1</td>
<td>2.7</td>
<td>5.8</td>
<td>4.8</td>
<td>4.8</td>
<td>5.8</td>
<td>1.4</td>
<td>5.1</td>
<td>1.7</td>
</tr>
<tr>
<td>ile</td>
<td>7.3</td>
<td>3.9</td>
<td>4.7</td>
<td>5.4</td>
<td>1.5</td>
<td>6.9</td>
<td>6.9</td>
<td>5.6</td>
<td>3.0</td>
<td>6.2</td>
<td>10.8</td>
<td>1.6</td>
<td>4.8</td>
<td>5.0</td>
<td>5.2</td>
<td>6.8</td>
<td>1.7</td>
<td>4.9</td>
<td>2.2</td>
</tr>
<tr>
<td>leu</td>
<td>11.5</td>
<td>4.9</td>
<td>7.8</td>
<td>6.5</td>
<td>2.1</td>
<td>6.9</td>
<td>7.2</td>
<td>3.6</td>
<td>2.1</td>
<td>5.3</td>
<td>8.6</td>
<td>1.8</td>
<td>5.3</td>
<td>3.2</td>
<td>4.2</td>
<td>7.0</td>
<td>0.9</td>
<td>5.8</td>
<td>2.9</td>
</tr>
<tr>
<td>lys</td>
<td>10.4</td>
<td>4.3</td>
<td>6.2</td>
<td>5.2</td>
<td>1.1</td>
<td>5.2</td>
<td>6.8</td>
<td>3.7</td>
<td>2.0</td>
<td>5.6</td>
<td>10.4</td>
<td>2.3</td>
<td>5.3</td>
<td>3.8</td>
<td>4.5</td>
<td>7.4</td>
<td>1.0</td>
<td>6.2</td>
<td>2.6</td>
</tr>
<tr>
<td>met</td>
<td>10.4</td>
<td>3.8</td>
<td>6.2</td>
<td>5.2</td>
<td>1.0</td>
<td>5.3</td>
<td>6.6</td>
<td>5.3</td>
<td>2.6</td>
<td>5.2</td>
<td>11.1</td>
<td>1.9</td>
<td>4.7</td>
<td>2.8</td>
<td>4.6</td>
<td>6.0</td>
<td>1.2</td>
<td>5.8</td>
<td>2.6</td>
</tr>
<tr>
<td>phe</td>
<td>10.8</td>
<td>3.8</td>
<td>4.8</td>
<td>4.6</td>
<td>0.7</td>
<td>4.6</td>
<td>7.0</td>
<td>4.9</td>
<td>1.7</td>
<td>4.7</td>
<td>11.4</td>
<td>2.8</td>
<td>5.2</td>
<td>3.3</td>
<td>5.1</td>
<td>7.4</td>
<td>0.9</td>
<td>6.3</td>
<td>2.0</td>
</tr>
<tr>
<td>pro</td>
<td>9.6</td>
<td>5.2</td>
<td>3.7</td>
<td>6.5</td>
<td>1.2</td>
<td>6.4</td>
<td>7.9</td>
<td>2.7</td>
<td>1.9</td>
<td>6.7</td>
<td>7.4</td>
<td>2.5</td>
<td>5.0</td>
<td>3.9</td>
<td>3.6</td>
<td>8.0</td>
<td>1.3</td>
<td>5.8</td>
<td>3.3</td>
</tr>
<tr>
<td>ser</td>
<td>8.4</td>
<td>4.6</td>
<td>3.6</td>
<td>5.4</td>
<td>0.7</td>
<td>7.6</td>
<td>5.4</td>
<td>5.2</td>
<td>2.3</td>
<td>6.1</td>
<td>11.2</td>
<td>2.4</td>
<td>5.5</td>
<td>4.2</td>
<td>2.8</td>
<td>6.5</td>
<td>1.4</td>
<td>5.4</td>
<td>2.9</td>
</tr>
<tr>
<td>thr</td>
<td>9.1</td>
<td>3.7</td>
<td>6.5</td>
<td>5.0</td>
<td>1.0</td>
<td>5.4</td>
<td>7.2</td>
<td>5.2</td>
<td>2.6</td>
<td>6.0</td>
<td>11.4</td>
<td>2.2</td>
<td>4.5</td>
<td>4.1</td>
<td>4.1</td>
<td>4.6</td>
<td>1.5</td>
<td>5.0</td>
<td>1.2</td>
</tr>
<tr>
<td>trp</td>
<td>9.1</td>
<td>3.7</td>
<td>4.2</td>
<td>5.6</td>
<td>0.9</td>
<td>5.7</td>
<td>7.5</td>
<td>5.7</td>
<td>2.2</td>
<td>5.5</td>
<td>12.2</td>
<td>2.0</td>
<td>4.2</td>
<td>3.5</td>
<td>5.9</td>
<td>6.2</td>
<td>1.1</td>
<td>5.3</td>
<td>2.6</td>
</tr>
<tr>
<td>tyr</td>
<td>7.9</td>
<td>3.6</td>
<td>6.5</td>
<td>4.9</td>
<td>1.2</td>
<td>4.5</td>
<td>7.1</td>
<td>7.0</td>
<td>2.6</td>
<td>3.0</td>
<td>11.7</td>
<td>1.6</td>
<td>4.5</td>
<td>4.7</td>
<td>4.9</td>
<td>6.4</td>
<td>1.5</td>
<td>4.6</td>
<td>1.4</td>
</tr>
<tr>
<td>val</td>
<td>9.6</td>
<td>4.4</td>
<td>4.1</td>
<td>5.9</td>
<td>1.0</td>
<td>6.2</td>
<td>6.4</td>
<td>3.4</td>
<td>1.8</td>
<td>6.5</td>
<td>10.2</td>
<td>2.5</td>
<td>5.2</td>
<td>3.7</td>
<td>3.8</td>
<td>7.2</td>
<td>1.1</td>
<td>6.1</td>
<td>2.7</td>
</tr>
</tbody>
</table>
Coding statistics: dimers to dicodons

- A bias is observed for dimers in proteins
- The dimer bias is reflected in dicodons: coding and non-coding regions have different dicodons bias.
- The bias in the observed dicodon (hexamer) frequencies can be used to predict coding regions in genomic sequences.
- All gene finding programs use this information!

Coding statistics: scoring (1)

Let $f_{abc,a'b'c'}^c$ denote the observed frequency for dicodon $abc, a'b'c'$ in a set of known coding regions, and let $f_{abc,a'b'c'}^n$ denote the observed frequency for the same dicodon in non-coding regions.

The score of dicodon $abc, a'b'c'$ in being coding is defined as:

$$P(abc, a'b'c') = \log\left(\frac{f_{abc,a'b'c'}^c}{f_{abc,a'b'c'}^n}\right)$$

Coding statistics: scoring (2)

- Properties of $P(abc, a' b' c')$:
 - if $P(abc, a' b' c') = 0$: dicodon $abc, a' b' c'$ has the same frequencies in coding and non-coding regions
 - if $P(abc, a' b' c') > 0$: dicodon $abc, a' b' c'$ is observed more frequently in coding regions
 - if $P(abc, a' b' c') < 0$: dicodon $abc, a' b' c'$ is observed more frequently in non-coding regions

Coding statistics: scoring (3)

- Assume $S = a_1 b_1 c_1, a_2 b_2 c_2, ..., a_{n+1} b_{n+1} c_{n+1}$ is a coding region with unknown reading frame.

- We can calculate the score of each frame of being coding:

 \[P_1 = P(a_1 b_1, c_1 a_2 b_2 c_2) + P(a_3 b_3 c_3, a_4 b_4 c_4) + ... + P(a_{n-1} b_{n-1} c_{n-1}, a_n b_n c_n) \]

 \[P_2 = P(b_1 c_1 a_2, b_2 c_2 a_3) + P(b_3 c_3 a_4, b_4 c_4 a_5) + ... + P(b_{n-1} c_{n-1} a_n, b_n c_n a_{n+1}) \]

 \[P_3 = P(c_1 a_2 b_2, c_2 a_3 b_3) + P(c_3 a_4 b_4, c_4 a_5 b_5) + ... + P(c_{n-1} a_n b_n, c_n a_{n+1}, b_{n+1}) \]
Coding statistics: example

- \(f^c(ACG, TAG) = 0.000, \ f^b(ACG, TAG) = 0.062 \)
- \(f^c(CGT, AGC) = 0.068, \ f^b(CGT, AGC) = 0.019 \)
- \(f^c(GTA, GCT) = 0.021, \ f^b(GTA, GCT) = 0.026 \)
- \(P(ACG, TAG) = -\infty \) (special case STOP codon)
- \(P(CGT, AGC) = \log(0.068 / 0.019) = 1.3 \)
- \(P(GTA, GCT) = \log(0.021 / 0.026) = -0.2 \)

Coding statistics: scoring (4)

- Procedure for predicting coding regions using coding statistics:
 - find all ORFs of the sequence (start/stop regions)
 - slide through the ORFs with a window of 60bp and find good scoring regions
Coding statistics: limitations

- Which solution is the best?
- Where are the coding region boundaries?
- Where we put the score cutoff to consider a region as coding?
 - low cutoff ⇒ high number of false positives
 - high cutoff ⇒ high number of false negatives

Outline

- Introduction
- Ab initio methods
 - Coding statistics
 - Signal detection
 - Integration of signal detection and coding statistics
 - Software
- Homology methods
 - Principle of the method
 - Software
- Performance evaluation
Signals

- Detection of signals in DNA sequences helps in detecting the correct coding regions
- A number of signals can be used:
 - promoter regions
 - acceptor/donor sites for splicing
 - intron branching points
 - poly-adenilation
 - ...

Signals: limitations

- DNA sequence signals have a low information content and can be degenerated
- ... to use together with coding statistics
Methods for signal detection

- **Pattern**: flexible consensus string
- **Weight matrix**: position specific scoring matrix
- **HMMs**: Hidden Markov Models
- **NN**: Neural networks (trained with TP/TN!)
 - The perceptron for acceptor site (Horton and Kanehisa, 1992):
 \[
 \begin{array}{cccccccc}
 T & A & C & G & C & G & T & A \\
 0100 & 0001 & 0001 & 0010 & 0010 & 1000 & 0100 & 0010 \\
 \end{array}
 \]
 \[
 \begin{array}{cccccccc}
 w1 & w2 & w3 & w4 & w5 & w6 & w7 & w8 \\
 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 \end{array}
 \]

 \[
 \begin{array}{cccccccc}
 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 \end{array}
 \]
 ~0 => false
 ~1 => true

Acceptor/Donor signals (1)

- Distribution observed for donor sites in human:
 - Table

<table>
<thead>
<tr>
<th></th>
<th>-14</th>
<th>-13</th>
<th>-12</th>
<th>-11</th>
<th>-10</th>
<th>-9</th>
<th>-8</th>
<th>-7</th>
<th>-6</th>
<th>-5</th>
<th>-4</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>11.1</td>
<td>12.7</td>
<td>3.2</td>
<td>4.8</td>
<td>12.7</td>
<td>8.7</td>
<td>16.7</td>
<td>16.7</td>
<td>12.7</td>
<td>9.5</td>
<td>26.2</td>
<td>6.3</td>
<td>100</td>
<td>0.0</td>
<td>21.4</td>
</tr>
<tr>
<td>c</td>
<td>36.5</td>
<td>30.9</td>
<td>19.1</td>
<td>23.0</td>
<td>34.9</td>
<td>39.7</td>
<td>40.5</td>
<td>40.5</td>
<td>36.5</td>
<td>33.3</td>
<td>68.2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>7.9</td>
</tr>
<tr>
<td>g</td>
<td>9.5</td>
<td>10.3</td>
<td>15.1</td>
<td>12.7</td>
<td>8.7</td>
<td>9.5</td>
<td>16.7</td>
<td>4.8</td>
<td>2.4</td>
<td>6.3</td>
<td>13.5</td>
<td>0.0</td>
<td>0.0</td>
<td>100</td>
<td>62.7</td>
</tr>
<tr>
<td>t</td>
<td>38.9</td>
<td>41.3</td>
<td>58.7</td>
<td>55.6</td>
<td>42.1</td>
<td>40.5</td>
<td>30.9</td>
<td>37.3</td>
<td>44.4</td>
<td>47.6</td>
<td>27.0</td>
<td>25.4</td>
<td>0.0</td>
<td>0.0</td>
<td>7.9</td>
</tr>
</tbody>
</table>

- Distribution observed for acceptor sites in human:
 - Table
Acceptor/Donor signals (2)

- Information content:

\[I_j = \left| \sum_i -f(i,j) \ast \log(f(i,j)/q(i)) \right| \]

where \(i = \{a, c, g, t\} \), \(j \) is the position (column), \(f(i,j) \) is the observed frequency for symbol \(i \) at position \(j \), and \(q(i) \) is the distribution of symbol \(i \) (in our case \(q(i) = 0.25 \)).

- A column with evenly distributed nucleotides has a low information content
- A column with unevenly distributes nucleotides has a higher information content

Acceptor/Donor signals (3)

<table>
<thead>
<tr>
<th></th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>34.0</td>
<td>60.4</td>
<td>9.2</td>
<td>0.0</td>
<td>0.0</td>
<td>52.6</td>
<td>71.3</td>
<td>7.1</td>
<td>16.0</td>
</tr>
<tr>
<td>c</td>
<td>36.3</td>
<td>12.9</td>
<td>3.3</td>
<td>0.0</td>
<td>0.0</td>
<td>2.8</td>
<td>7.6</td>
<td>5.5</td>
<td>16.5</td>
</tr>
<tr>
<td>g</td>
<td>18.3</td>
<td>12.5</td>
<td>80.3</td>
<td>100</td>
<td>0.0</td>
<td>41.9</td>
<td>11.8</td>
<td>81.4</td>
<td>20.9</td>
</tr>
<tr>
<td>t</td>
<td>11.4</td>
<td>14.2</td>
<td>7.3</td>
<td>0.0</td>
<td>100</td>
<td>2.5</td>
<td>9.3</td>
<td>5.9</td>
<td>46.2</td>
</tr>
</tbody>
</table>

\[I_{-3} = \left| \sum_i -f(i,-3) \ast \log_2(f(i,-3)/0.25) \right| \]

\[= \left| -0.34 \ast \log_2(0.34/0.25) \right| \\
-0.363 \ast \log_2(0.363/0.25) \\
-0.183 \ast \log_2(0.183/0.25) \\
-0.114 \ast \log_2(0.114/0.25) \right| \]

\[= 0.13 \]

\[I_{+1} = \left| \sum_i -f(i,+1) \ast \log_2(f(i,+1)/0.25) \right| = 2 \]
Acceptor/Donor signals (4)

<table>
<thead>
<tr>
<th></th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>34.0</td>
<td>60.4</td>
<td>9.2</td>
<td>0.0</td>
<td>0.0</td>
<td>52.6</td>
<td>71.3</td>
<td>7.1</td>
<td>16.0</td>
</tr>
<tr>
<td>c</td>
<td>36.3</td>
<td>12.9</td>
<td>3.3</td>
<td>0.0</td>
<td>0.0</td>
<td>2.8</td>
<td>7.6</td>
<td>5.5</td>
<td>16.5</td>
</tr>
<tr>
<td>g</td>
<td>18.3</td>
<td>12.5</td>
<td>80.3</td>
<td>100</td>
<td>0.0</td>
<td>41.9</td>
<td>11.8</td>
<td>81.4</td>
<td>20.9</td>
</tr>
<tr>
<td>t</td>
<td>11.4</td>
<td>14.2</td>
<td>7.3</td>
<td>0.0</td>
<td>100</td>
<td>2.5</td>
<td>9.3</td>
<td>5.9</td>
<td>46.2</td>
</tr>
</tbody>
</table>

Acceptor/Donor signals (5)

<table>
<thead>
<tr>
<th></th>
<th>-14</th>
<th>-13</th>
<th>-12</th>
<th>-11</th>
<th>-10</th>
<th>-9</th>
<th>-8</th>
<th>-7</th>
<th>-6</th>
<th>-5</th>
<th>-4</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>11.1</td>
<td>12.7</td>
<td>3.2</td>
<td>4.8</td>
<td>12.7</td>
<td>8.7</td>
<td>16.7</td>
<td>16.7</td>
<td>12.7</td>
<td>9.5</td>
<td>26.2</td>
<td>6.3</td>
<td>100</td>
<td>0.0</td>
<td>21.4</td>
</tr>
<tr>
<td>c</td>
<td>36.5</td>
<td>30.9</td>
<td>19.1</td>
<td>23.0</td>
<td>34.9</td>
<td>39.7</td>
<td>34.9</td>
<td>40.5</td>
<td>40.5</td>
<td>36.5</td>
<td>33.3</td>
<td>68.2</td>
<td>0.0</td>
<td>0.0</td>
<td>7.9</td>
</tr>
<tr>
<td>g</td>
<td>9.5</td>
<td>10.3</td>
<td>15.1</td>
<td>12.7</td>
<td>8.7</td>
<td>9.5</td>
<td>16.7</td>
<td>4.8</td>
<td>2.4</td>
<td>6.3</td>
<td>13.5</td>
<td>0.0</td>
<td>0.0</td>
<td>100</td>
<td>62.7</td>
</tr>
<tr>
<td>t</td>
<td>38.9</td>
<td>41.3</td>
<td>58.7</td>
<td>55.6</td>
<td>42.1</td>
<td>40.5</td>
<td>30.9</td>
<td>37.3</td>
<td>44.4</td>
<td>47.6</td>
<td>27.0</td>
<td>25.4</td>
<td>0.0</td>
<td>0.0</td>
<td>7.9</td>
</tr>
</tbody>
</table>
Detection of signals

- Build model (i.e. weigh matrix) for splicing sites, poly-A sites, ...
- Take in consideration positions with high information content
- Transform frequencies to scores
- Scan the sequence with the weight matrix

<table>
<thead>
<tr>
<th></th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0.4</td>
<td>1.3</td>
<td>-1.4</td>
<td>inf</td>
<td>-inf</td>
<td>1.1</td>
<td>1.5</td>
<td>-1.8</td>
<td>-0.6</td>
</tr>
<tr>
<td>c</td>
<td>0.5</td>
<td>-1.0</td>
<td>-2.9</td>
<td>inf</td>
<td>inf</td>
<td>-3.2</td>
<td>-1.7</td>
<td>-2.2</td>
<td>-0.6</td>
</tr>
<tr>
<td>g</td>
<td>-0.5</td>
<td>-1.0</td>
<td>1.7</td>
<td>2</td>
<td>inf</td>
<td>0.7</td>
<td>-1.3</td>
<td>1.7</td>
<td>-0.3</td>
</tr>
<tr>
<td>t</td>
<td>-1.1</td>
<td>-0.8</td>
<td>-1.8</td>
<td>inf</td>
<td>2</td>
<td>-3.3</td>
<td>-1.4</td>
<td>-2.1</td>
<td>0.9</td>
</tr>
</tbody>
</table>

CAGGTAAAGT: $0.5 + 1.3 + 1.7 + 2 + 2 + 1.1 + 1.5 + 1.7 + 0.9 = 12.7$

TCCGTTCGA: $-1.1 - 1 - 2.9 + 2 + 2 - 3.3 - 1.7 - 2.2 - 0.6 = -8.8$

EPD: Eukaryotic promoter database

- Annotated non-redundant collection of eukaryotic POL II promoters
- Contains promoters for which the transcription site has been determined experimentally
- WEB access: www.epd.isb-sib.ch
EPD entry

General information about the entry
Entry name: EPD_NC2
Entry type: standard
Promoter type: multiple
Accession number: EPD_NC2
Description of the gene: Nuclei.
Creation date: 19-SEP-1993 (Rel. 56)
Last revision: 13-SEP-2004 (Rel. 80)
Taxonomic division: VRT
Organism: Homo sapiens (human)
Keywords: Nuclei genes, Phosphorylation, Methylation, DNA-binding.

Reference with other entries
Biological group: Biological group 212: Mammalian nuclei.
Alternative promoter: none.
Neighbouring gene(s): none.

ORF strategy
GENOME
NT_00463.13
NT_004639
[8538464, 9974646]

EPD
Ns NC2

DNA References
AC017104 [EMBL GeSeq_DB] AG017104 [EMBL GeSeq_DB]
M60501 [EMBL GenBank_DB] [EMBL GenBank_DB]
A339561 [EMBL GeSeq_DB] A339560 [EMBL GeSeq_DB]
A339560 [EMBL GeSeq_DB] A339560 [EMBL GeSeq_DB]
A339560 [EMBL GeSeq_DB] A339560 [EMBL GeSeq_DB]

SWISSPROT
PL1555 [PEGMS_HUMAN]

References
MEDLINE:2522
1. Siddhara S., Siddhara O.W., Vining F., Pollet H.B., ferres A.L.
 "Genomic organization of the human nuclear protein gene"
MEDLINE:1178528
2. Suzuki T., Yamauchi R., Nakano K., Sugano S.
 "MDF: database of mouse transcriptional start sites and full-length cDNAs".
 Nucleic Acids Res. 30:328-331 (2002).
MEDLINE:942157
3. Beane S., Beane S., Beane S., Beane S.
 "The mammalian genome collection"

Sequence
Nucleotide sequence:
[Insert nucleotide sequence information]

Method(s):
Nucleic sequence (1)
Primer extension with homologous sequence (1)
Northern blot (1)
Southern blot (1)
Bacterial expression (1)

Taxonomy
6.1. Chromosomal genes
6.1.2. Structural proteins
6.1.2.3. RNA-binding proteins
6.1.2.3.1. Nucleic RNA-binding proteins

Supplementary information
[Insert supplementary information]

Localization
[Insert localization information]
Outline

- Introduction
- Ab initio methods
 - Coding statistics
 - Signal detection
 - Integration of signal detection and coding statistics
 - Software
- Homology methods
 - Principle of the method
 - Software
- Performance evaluation

Coding statistics and signals
Coding statistics and signals

- A number of methods exist to integrate predicted signals and coding signals.
- All these methods are classifiers based on machine learning theory.
- Training sets are required to extract coding statistic and signal information.

Generalized HMMs

![Diagram of Genomic DNA, Exon, Intron, Begin, and End states with Predicted gene structure]
Generalized HMMs (2)

Example: GENSCAN model
Outline

- Introduction
- Ab initio methods
 - Coding statistics
 - Signal detection
 - Integration of signal detection and coding statistics
 - Software
- Homology methods
 - Principle of the method
 - Software
- Performance evaluation

GENSCAN: form

Organism: [Vertebrate] | Suboptimal exon cutoff (optional): 1.00 |

Sequence name (optional):
Print options: Predicted peptides only |
Upload your DNA sequence file (one-letter code, upper or lower case, spaces/numbers ignored):
Browse...
Or paste your DNA sequence here (one-letter code, upper or lower case, spaces/numbers ignored):

To have the results mailed to you, enter your email address here (optional):

Run GENSCAN Clear Input...
GENSCAN: output (1)

- **WEB server:** http://genes.mit.edu/GENSCAN.html
- **Models for vertebrates, Arabidopsis, Maize**

<table>
<thead>
<tr>
<th>Gn.Ex</th>
<th>Type</th>
<th>S</th>
<th>Begin</th>
<th>End</th>
<th>Len</th>
<th>Fr</th>
<th>Ph</th>
<th>I/Ac</th>
<th>Do/T</th>
<th>CodRg</th>
<th>P</th>
<th>Tscr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>Prom</td>
<td>+</td>
<td>1653</td>
<td>1692</td>
<td>40</td>
<td>-</td>
<td></td>
<td>1</td>
<td>75</td>
<td>151</td>
<td>0.925</td>
<td>12.64</td>
</tr>
<tr>
<td>1.01</td>
<td>Init</td>
<td>+</td>
<td>5215</td>
<td>5266</td>
<td>52</td>
<td>0</td>
<td>1</td>
<td>83</td>
<td>75</td>
<td>163</td>
<td>0.895</td>
<td>15.02</td>
</tr>
<tr>
<td>1.02</td>
<td>Intr</td>
<td>+</td>
<td>5395</td>
<td>5562</td>
<td>168</td>
<td>2</td>
<td>0</td>
<td>89</td>
<td>75</td>
<td>163</td>
<td>0.895</td>
<td>15.02</td>
</tr>
<tr>
<td>1.03</td>
<td>Intr</td>
<td>+</td>
<td>11738</td>
<td>11899</td>
<td>66</td>
<td>0</td>
<td>0</td>
<td>74</td>
<td>113</td>
<td>101</td>
<td>0.990</td>
<td>11.15</td>
</tr>
<tr>
<td>1.04</td>
<td>Intr</td>
<td>+</td>
<td>12188</td>
<td>12424</td>
<td>237</td>
<td>0</td>
<td>0</td>
<td>71</td>
<td>86</td>
<td>197</td>
<td>0.662</td>
<td>15.39</td>
</tr>
<tr>
<td>1.05</td>
<td>Intr</td>
<td>+</td>
<td>14288</td>
<td>14623</td>
<td>336</td>
<td>0</td>
<td>0</td>
<td>82</td>
<td>98</td>
<td>263</td>
<td>0.986</td>
<td>22.19</td>
</tr>
<tr>
<td>1.06</td>
<td>Intr</td>
<td>+</td>
<td>17003</td>
<td>17203</td>
<td>201</td>
<td>0</td>
<td>0</td>
<td>116</td>
<td>86</td>
<td>102</td>
<td>0.976</td>
<td>12.06</td>
</tr>
<tr>
<td>1.07</td>
<td>Intr</td>
<td>+</td>
<td>17741</td>
<td>17859</td>
<td>119</td>
<td>0</td>
<td>2</td>
<td>78</td>
<td>109</td>
<td>51</td>
<td>0.984</td>
<td>6.38</td>
</tr>
<tr>
<td>1.08</td>
<td>Intr</td>
<td>+</td>
<td>18197</td>
<td>18264</td>
<td>68</td>
<td>1</td>
<td>2</td>
<td>103</td>
<td>72</td>
<td>81</td>
<td>0.541</td>
<td>5.70</td>
</tr>
</tbody>
</table>

>02:36:44|GENSCAN_predicted_peptide_1|448_aa
MCKAIILRLILLIIHQQVQTLQGKIVLGLGSVKEAEFPCTESKQKTVFPTWKFSDFQA
KILQSQGKVLIRGGSQPSQDFPRFSSKMGAVGSFPLIINLKMHDGQTYICEILRNKCEE
...

Gn.Ex: gene number, exon number (for reference)

Type:
- Init = Initial exon (ATG to 5' splice site)
- Intr = Internal exon (3' splice site to 5' splice site)
- Term = Terminal exon (3' splice site to stop codon)
- Sngl = Single-exon gene (ATG to stop)
- Prom = Promoter (TATA box / initiation site)
- PlyA = poly-A signal (consensus: AATAAA)

S: DNA strand (+ = input strand; - = opposite strand)

Begin: beginning of exon or signal (numbered on input strand)

End: end point of exon or signal (numbered on input strand)

Len: length of exon or signal (bp)

Fr: reading frame (a forward strand codon ending at x has frame x mod 3)

Ph: net phase of exon (exon length modulo 3)

I/Ac: initiation signal or 3' splice site score (tenth bit units)

Do/T: 5' splice site or termination signal score (tenth bit units)

CodRg: coding region score (tenth bit units)

P: probability of exon (sum over all parses containing exon)

Tscr: exon score (depends on length, I/Ac, Do/T and CodRg scores)
HMMgene

- WEB server: http://www.cbs.dtu.dk/services/HMMgene/
- Can return sub-optimal predictions to help identifying alternative splicing
- Accept annotation from user
- Human and worm models

HMMgene: form

Submission of a local file (HTML 8.0 or higher)
Organism:
- Human (and other vertebrates)
- C. elegans
File in FASTA format
Options:
- Predict signals
- Best prediction
- File with annotation (optional)

Submission by pasting sequences:
Organism:
- Human (and other vertebrates)
- C. elegans
Sequence(s) in FASTA format
Options:
- Predict signals
- Best prediction

Annotation (optional)
HMMgene: output

SEQ Sequence 00000 (-) A:5406 C:4748 G:4754 T:5092
Sequence HMMgene1.1a firstex 17618 17828 0.578 - 1 bestparse:cds_1
Sequence HMMgene1.1a exon_1 17049 17101 0.560 - 0 bestparse:cds_1
Sequence HMMgene1.1a exon_2 14517 14607 0.659 - 1 bestparse:cds_1
Sequence HMMgene1.1a exon_3 13918 13973 0.718 - 0 bestparse:cds_1
Sequence HMMgene1.1a exon_4 12441 12508 0.751 - 2 bestparse:cds_1
Sequence HMMgene1.1a lastex 7045 7222 0.893 - 0 bestparse:cds_1
Sequence HMMgene1.1a CDS 7045 17828 0.180 - . bestparse:cds_1
Sequence HMMgene1.1a DON 19837 19838 0.001 - 1
Sequence HMMgene1.1a START 19732 19734 0.024 - .
Sequence HMMgene1.1a ACC 19712 19713 0.001 - 0
Sequence HMMgene1.1a DON 19688 19689 0.006 - 1
Sequence HMMgene1.1a DON 19686 19687 0.004 - 0
...

------------ ----- ----
position prob strand and frame

Symbols: firstex = first exon; exon$_$n$ = internal exon; lastex = last exon;
singleex = single exon gene; CDS = coding region

GRAILexp

- WEB server: http://compbio.ornl.gov/grailexp/
- Based on a neural network that incorporates signals and coding statistics
- Can use homology information!
- Human, Mouse, Drosophila, and Arabidopsis models
- Bacterial models

![Diagram of neural network structure]
GRAILexp: form

Select organism: Mouse [Mus musculus]
Select output type: Human-Readable Text

- **Perceval Exon Candidates**
 (Locate Grail.tsv using an improved version of the Grail.3 search tool)
- **Oligo EST/mRNA/cDNA Alignments**
 (Search from the selected EST/mRNA databases and build exons based on similarities with the sequences in these databases)

Select database(s) to search:

- **Gene Models**
 (Assemble complete gene structures from the above selected options, i.e. Perceval exons candidates and/or Oligo EST/mRNA (alignments))
- **Cpg Islands**
 (Find Cpg Islands using Grail.3)
- **Repetitive Elements**
 (Locate repetitive elements using a BLAST-based method against the Repbase database)

DNA Sequence (Raw or FASTA format, paste in box or upload file):

GRAILexp: output

Gene 1, Variant 1
Strand: +
Bounds: 1814-6614
Exons: 5

Top-Scoring Reference: AP038421 (2560 bp) (99% id, 2833-6614)
>human|AP038421|baylor_ht|AP038421|AP038421 Homo sapiens GPI-linked anchoor protein (GFRA1) mRNA, complete cds

Reference Path: CA487395.1 (881 bp) (97%, 1814-5295)
AP038421 (2560 bp) (99%, 2833-6614)

---Index---- --------Exons-------- ---------CDS--------- -Ph- -Fr- -Len- -Scr-
1.1.1 1814 1892 0 1 79 100
1.1.2 2833 2954 1 2 122 100
1.1.3 3842 4127 4088 4127 0 1 286 99
1.1.4 5002 5295 5002 5295 1 2 286 99
1.1.5 6531 6614 6531 6614 1 1 84 100
...

>GrailEXP Gene 1, Var 1 mRNA|Similar to AP038421
atgaacttggacatcagcaaagatcccgagcactgccggctggctcctagaccggtctcccgacccagtg
...

>GrailEXP Gene 1, Var 1 protein|Derived from similarity to AP038421
MFLATLYFALPLLDLLLSAEVSGGDRLDCVKASDQCLKEQSCSTKYRTLRQCVAGKETNFSLASGLEAKDECRSAMEALQKSLVNCRCXEMKZXEMCTYKQSGDRLRESSIESIIKIVPSYEPUNSRSLSDIFRUVFPF1EX
...
Outline

- Introduction
- Ab initio methods
 - Coding statistics
 - Signal detection
 - Integration of signal detection and coding statistics
 - Software
- Homology methods
 - Genewise
 - Sim4 and BLAST
- Performance evaluation

Homology methods: principle

Genomic DNA sequence

Detect signals

Alignment with homologous sequence (mRNA, EST, protein)

Genomic DNA sequence

[Diagram showing genomic DNA sequence with detected signals and alignment with homologous sequence.]

LC-SIB-2005 – p.52/7
Genewise uses HMMs to align DNA sequences to protein sequences.

Principle:
- combine two HMMs:
 1. HMM to translate DNA sequence to aa
 2. HMM to align translated sequence to homologous protein
- add transitions to deal with frame-shifts
- add intron model

Good performances, but requires good homologous sequences (>70%) and a lot of CPU

WEB server: http://www.ebi.ac.uk/Wise2/
Genewise: simplified model

Genewise: form

<table>
<thead>
<tr>
<th>Your Email</th>
<th>Results</th>
<th>Output for alignments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>interactive</td>
<td>Parameters</td>
</tr>
</tbody>
</table>

Output for gene predictions

- Gene structure
- Translation
- cDNA
- EMRBL feature table format

Sequence 1: paste a Protein Sequence in fasta format OR upload a file:

Seq. 1 Upload file: [Browse...]
Genewise: perfect match

seq1
249 TDRRIGCLLS	GLDSSLVAATLLX
TDRRIGCLLS	GLDSSLVAATLLX
TDRRIGCLLS	G:G[ggg]
GLDSSLVAATLLX	

seq1
| 12930 agaaagtcttGGTGAAGT Intron 4 | TAGGGgtgtatgggacta |
| caggtggttc | <1-----[12961:13408]-1> |
| gtacgttcccta |
| acagtcctaa |
| cgcccgttctggg |

Gene 2979 19554
Exon 2979 3227 phase 0
Exon 7315 7552 phase 0
Exon 12416 12601 phase 1
Exon 12859 12960 phase 1
Exon 13409 13536 phase 1
Exon 14999 15125 phase 0
Exon 16356 16462 phase 1
Exon 18601 18756 phase 0
Exon 19348 19554 phase 0

Genewise: frame shift

seq1
249 TDRRIGCLLS	GLDSSLVAATLLX
TDRRIGCLLS	S
TDRRIGCLLS	G:G[ggg]
GLDSSLVAATLLX	

seq1
| 12930 agaaagtcttGGTGAAGT Intron 4 | TAGGGgtgtatgggacta |
| caggtggttc | <1-----[12961:13408]-1> |
| gtacgttcccta |
| acagtcctaa |
| cgcccgttctggg |

Gene 1
Gene 2979 12953
Exon 2979 3227 phase 0
Exon 7315 7552 phase 0
Exon 12416 12601 phase 1
Exon 12859 12953 phase 1
Genewise: mismatch

... seq1 249 TDRR--CLLS GLDSSLVAATLLK
 TDRR CLLS GLDSSLVAATLLK
 TDRRIGCLLS G:G[ggg] GLDSSLVAATLLK
... seq1 12910 agaaagtcttGGTGAAGT Intron 4 TAGGGgtgtatgggacta
caggtgggct <l-----[12961:13408]-l> gtacgttccctta
acctgccctaa cgcccggttctggg
...

Gene 1
Gene 2979 19554
 Exon 2979 3227 phase 0
 Exon 7315 7552 phase 0
 Exon 12416 12601 phase 1
 Exon 12859 12960 phase 1
 Exon 13409 13556 phase 0
 Exon 14999 15125 phase 0
 Exon 16356 16462 phase 1
 Exon 18601 18756 phase 0
 Exon 19348 19554 phase 0

Outline

- Introduction
- Ab initio methods
 - Coding statistics
 - Signal detection
 - Integration of signal detection and coding statistics
- Software
- Homology methods
 - Genewise
 - Sim4 and BLAST
- Performance evaluation
sim4

- sim4 aligns cDNA to genomic sequences
- sim4 performs standard dynamic programming, but:
 - models splice sites
 - introns are treated as a special kind of gaps with low penalties
- sim4 performs very well, but needs strong similarity between the sequences

sim4 output

...
BLAST

- Can be used to find genomic regions similar to ESTs, cDNA, proteins
- A hit doesn’t mean necessarily an exon. Need of post-processing
- Indicates the rough position of exons

 ![Diagram showing AG and GT, ideal BLAST, and real BLAST]

- ...but BLAST is fast! can reduce the search space for other programs

Trimming with BLAST

1. Protein sequence
2. cDNA sequence
3. BLAST vs genomic
4. Get best BLAST HSPs (trimming)
5. GeneWise
6. sim4
Outline

- Introduction
- Ab initio methods
 - Coding statistics
 - Signal detection
 - Integration of signal detection and coding statistics
 - Software
- Homology methods
 - Genewise
 - Sim4 and BLAST
- Performance evaluation

Evaluation of performances (1)

- **Sensitivity**: S_n is the proportion of coding nucleotides correctly predicted as coding:

 $$S_n = \frac{TP}{TP + FN}$$

- **Specificity**: S_p is the proportion on nucleotides predicted as coding that are actually coding:

 $$S_p = \frac{TP}{TP + FP}$$
Evaluation of performances (2)

- **Correlation coefficient**: CC is a single measure that captures both specificity and sensitivity:

\[
CC = \frac{(TP \times TN) - (FN \times FP)}{\sqrt{(TP + FN) \times (TN + FP) \times (TP + FP) \times (TN + FN)}}
\]

- **Approximate correlation**: AC is similar to CC, but defined under any circumstance:

\[
AC = (ACP - 0.5) \times 2
\]

where

\[
ACP = \frac{1}{4} \left(\frac{TP}{TP + FN} + \frac{TP}{TP + FP} + \frac{TN}{TN + FP} + \frac{TN}{TN + FN} \right)
\]

Benchmark

- **Evaluation of some programs** (Rogic et al., 2001)

<table>
<thead>
<tr>
<th>Program</th>
<th>No. of sequences</th>
<th>(S_n)</th>
<th>(S_p)</th>
<th>AC</th>
<th>CC</th>
</tr>
</thead>
<tbody>
<tr>
<td>FGENES</td>
<td>195</td>
<td>0.86</td>
<td>0.88</td>
<td>0.84±0.19</td>
<td>0.83</td>
</tr>
<tr>
<td>GeneMark.hmm</td>
<td>195</td>
<td>0.87</td>
<td>0.89</td>
<td>0.84±0.18</td>
<td>0.83</td>
</tr>
<tr>
<td>MZEF</td>
<td>119</td>
<td>0.70</td>
<td>0.73</td>
<td>0.68±0.21</td>
<td>0.66</td>
</tr>
<tr>
<td>GENSCAN</td>
<td>195</td>
<td>0.95</td>
<td>0.90</td>
<td>0.91±0.12</td>
<td>0.91</td>
</tr>
<tr>
<td>HMMgene</td>
<td>195</td>
<td>0.93</td>
<td>0.93</td>
<td>0.91±0.13</td>
<td>0.91</td>
</tr>
</tbody>
</table>
Comments

- HMMgene and GENSCAN perform the best
- Some program’s accuracy depend on G+C content, except for HMMgene and GENSCAN
- Accuracy decrease for short (<70) and long (>200) exons
- Internal exons are more likely to be correctly predicted
- Initial and terminal exons are the most likely to be missed

Limits

- Existing predictors are for protein coding regions
- Predictions work fine for "typical" genes:
 - partial gene are often missed
 - training sets may be biased
 - atypical genes use others grammars
... coffee!